学术报告
6月5日 安聪沛副教授学术报告
发布时间:2019-05-31
报告题目:On regularized barycentric interpolation formulae
主讲人:西南财经大学安聪沛副教授
报告时间:2019年6月5日(星期三)10:30-11:30
报告地点:南校区336栋旧数学楼210
主持:江颖副教授
摘要:Regularized barycentric interpolation formulae were introduced in our previous paper, which involve l2 and l1 regularization terms, respectively. Naturally, regularized barycentric interpolation formulae could be applied to recover contaminated functions with well distributed interpolation nodes. In this talk, we introduce modified regularized Lagrange interpolation formula based on the so-called first barycentric interpolation, given by C. Jacobi in 1825. Then we focus on the numerical stability of these regularized interpolation formulae in terms of backward and forward stability. We also involve the stability with respect to extrapolation, illustrating regularized modified Lagrange interpolation is better than regularized barycentic interpolation in extrapolation. Moreover, we employ Chebyshev points (1st and 2nd kind, respectively) and Legendre points as interpolation nodes to test numerical stability.
个人介绍:安聪沛,西南财经大学经济数学学院副教授、博导,广东省计算数学学会常务理事兼副秘书长。本科、硕士毕业于中南大学,师从向淑晃;博士毕业于香港理工大学,师从Xiaojun Chen, Ian H. Sloan。曾在暨南大学数学系工作7年,多次应邀访问香港理工大学、香港中文大学、香港大学、香港城市大学、中国科学院数学与系统科学研究院等著名学术机构。主要从事点集分布理论以及计算方法应用研究,在球面t-设计、高震荡函数积分计算、插值理论和方法有较好的研究结果。主持国家自然科学基金2项,省部级自然基金1项,中央高校基金2项,在SIAM J. Numer. Anal., J. Comput. & Appl. Math., Math. & Comput. 等计算数学期刊发表论文多篇。