学术报告
12月7日 学术报告(两个)
发布时间:2020-12-02
学术报告1
报告题目:两步四阶方法:计算流体力学的时空耦合性及其展望
主讲人:李杰权研究员,北京应用物理与计算数学研究所
报告时间:2020年12月7日 9:30-10:30
报告地点:bat365在线中国登录入口A101(线下),腾讯会议ID:391 995 214,会议密码:352741(线上)
主持:邹青松教授
摘要:
With increasing engineering demands, there need high order accurate schemes embedded with precise physical information in order to capture delicate small scale structures with correct “physics". Generally speaking, there are two families of high order methods popularly used in practice: one is the family of line methods, relying upon the Runge-Kutta time-stepping to achieve the temporal discretization; the other is the family of one-stage Lax-Wendroff (L-W) type methods, the numerical realization of the Cauchy-Kowalevski approach for the corresponding partial differential equations (PDEs).
In the context of compressible fluid flows, the building block of the line methods is the Riemann solution (conservative quantities), which is labeled as “1”. Each step in the Runge-Kutta iteration just has first order accuracy. In order to design a fourth order accuracy scheme in time, for example, one needs four stages labeled as “1+1+1+1=4”, besides the treatment of spatial discretization, which naturally spans computational stencils and decreases computational efficiency. Additionally, the spatial-temporal decoupling hampers to contain as sufficient physical information as possible, such as the thermodynamics. In contrast, the one-stage L-W type methods are more compact and contain all information, however, it is very complicated and hard to be used for the compressible fluid flows due to the high nonlinearity of underlying engineering problems, particularly in multi-dimensions.
In recent years, the pair, the primitive variables and their dynamics labeled as “2”, e.g., the velocity and the acceleration, is taken as the building black to devise numerical schemes. In particular, a family of two-stage fourth-order accurate schemes, labeled as “2+2=4”, are designed for the computation of compressible fluid flows. The direct use of dynamics reflects the temporal-spatial coupling and entropy stability. The resulting schemes are compact, robust, and efficient. In this talk I will introduce how and why high order accurate schemes should be so designed, as sharp contrast to line methods and one-stage L-W methods. More fundamentally, we will emphasize the spatial-temporal coupling essence that a modern CFD algorithms should have when dealing with “tough” problems.
个人介绍:李杰权,北京应用物理与计算数学研究所研究员,北京大学应用物理与技术中心兼职教授。分别在北京师范大学和中国科学院数学研究所获得硕士和博士学位,曾任首都师范大学和北京师范大学教授,并在以色列希伯莱大学、德国马格德堡大学和美国斯坦福大学等十余所国际著名学术机构做访问教授。主要研究领域包括计算流体力学、偏微分方程理论和数值分析,在应用和计算数学的学术刊物上发表论文70余篇,在朗文(Langman)出版社出版英文专著1部,多次受邀在国际会议上作大会邀请报告。
学术报告2
报告题目:基于相场方法的三维两相磁流体模型及其稳定数值方法
主讲人:毛士鹏研究员,中国科学院数学与系统科学研究院
报告时间:2020年12月7日 10:30-11:30
报告地点:bat365在线中国登录入口A101(线下),腾讯会议ID:391 995 214,会议密码:352741(线上)
主持:邹青松教授
摘要:两相磁流体问题在多个工业领域具有重要的应用,但是目前文献中关于两相磁流体模型及其数值计算的研究比较稀少。我们针对具有不同粘度和导电性能的磁流体流动问题,提出了基于扩散界面的两相磁流体模型。这种相场模型可以有效的描述界面的几何转换,比如自交、夹闭、重连和分裂界面的演变,并且能够保持总体的质量守恒。我们针对所提出的基于扩散界面的两相磁流体模型设计了高效的数值求解方法。其空间利用有限元方法离散,时间采用一阶半隐格式结合凸分裂法,提出了一个全离散的稳定格式。我们设计了两相哈特曼流以及三维剪切两相磁流体问题的数值算例,验证了所提出模型的有效性和数值方法的可靠性。
个人介绍:毛士鹏,中国科学院数学与系统科学研究院研究员,博士生导师。2008年博士毕业于中国科学院数学与系统科学研究院计算数学所。曾经在法国国家信息与自动化研究所以及在瑞士苏黎世联邦理工学院做博士后和研究助理, 主要研究方向为有限元方法及其应用,计算流体力学和磁流体力学等。在 Math. Comp.、 Numer. Math.、SIAM. J. Numer. Anal.、 SIAM J.Sci.Comput.,Math. Model Meth. Appl. Sci. (M3AS) 等国际专业SCI杂志上发表论文60余篇。