
赵知临
副教授
教师简介
赵知临,副教授、博士生导师、国家级高层次青年人才
研究领域
本研究方向主要聚焦于机器学习,特别关注模型在复杂与不可预知环境中的行为与泛化能力,涵盖外分布检测、分布差异度量与泛化误差分析等核心问题,并探索其在数据挖掘、计算机视觉、大语言模型与具身智能等领域中的潜在应用。例如,计算机视觉中的跨模态表示对齐与从模拟到现实的迁移学习,具身智能中强化学习策略在未知环境中的快速适应与泛化,大语言模型中的幻觉检测、越狱行为识别与跨语境知识迁移等。我们注重理论与实践的结合,力求在扎实的数学与算法基础上,提出能够回应现实需求的建模方法与学习机制,在理论与应用之间架起桥梁,推动算法走向复杂真实世界。我们追求大道至简的研究理念,追求从本质出发理解复杂系统的边界行为,构建兼具简洁性、解释性与鲁棒性的智能系统。无论您对模型原理充满好奇,还是希望打造能在真实世界中可靠运行的智能系统,这里都能为您提供富有挑战与成长空间的研究舞台。
如果您对我的研究方向感兴趣,并希望与我共同学习与探索,欢迎博士生、硕士生以及优秀本科生加入实验室。
目前有2026年入学的专业硕士、学术硕士与学术博士研究生(可与深圳河套学院联培)名额,如有意向,请随时与我联系。
获奖及荣誉
2018 广东省优秀硕士毕业生
2016 bat365官方网站登录优秀本科毕业生
教育背景
2018.8-2022.8,悉尼科技大学,工程与信息技术学院,博士
2016.9-2018.6,bat365官方网站登录,bat365在线中国登录入口,硕士
2012.9-2016.6,bat365官方网站登录,bat365在线中国登录入口,学士
工作经历
2024.12至今,bat365官方网站登录,bat365在线中国登录入口,副教授
2023.5-2024.11,麦考瑞大学,科学与工程学院,博士后
2022.8-2023.5,悉尼科技大学,工程与信息技术学院,博士后
代表性论著
[TPAMI] Zhilin Zhao, Longbing Cao, Yixuan Zhang, Kun-Yu Lin, Wei-Shi Zheng. Distilling the Unknown to Unveil Certainty. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.
[TPAMI] Zhilin Zhao, Longbing Cao, Kun-Yu Lin. Supervision Adaptation Balancing In-Distribution Generalization and Out-of-Distribution Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 12, pp. 15743-15758, 2023.
[TPAMI] Zhilin Zhao, Longbing Cao, Kun-Yu Lin. Revealing the Distributional Vulnerability of Discriminators by Implicit Generators. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 7, pp. 8888-8901, 2022.
[AI] Zhilin Zhao, Longbing Cao, Philip S. Yu. Out-of-distribution Detection by Regaining Lost Clues. Artificial Intelligence,vol. 339, pp. 104275, 2024.
[TMLR] Zhilin Zhao, Longbing Cao. Dual Representation Learning for Out-of-Distribution Detection. Transactions on Machine Learning Research, pp. 1-21, 2023.
[ML] Zhilin Zhao, Longbing Cao. Weighting Non-IID Batches for Out-of-distribution Detection. Machine Learning, vol. 113, no. 10, pp. 7371-7391, 2024.
[TNNLS] Zhilin Zhao, Longbing Cao, Kun-Yu Lin. Out-of-Distribution Detection by Cross-Class Vicinity Distribution of In-Distribution Data. IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 10, pp. 13777-13788, 2024.
[TNNLS] Zhilin Zhao, Longbing Cao, Chang-Dong Wang. Gray Learning from Non-iid Data with Out-of-distribution Samples. IEEE Transactions on Neural Networks and Learning Systems, vol. 36, no. 1, pp. 1396-1409, 2025.
[NeurIPS] Zhilin Zhao,Longbing Cao, Xuhui Fan, Wei-Shi Zheng. Revealing Distribution Discrepancy by Sampling Transfer in Unlabeled Data. Advances in Neural Information Processing Systems, pp. 1-28, 2024.
[NeurIPS] Zhilin Zhao,Longbing Cao. R-divergence for Estimating Model-oriented Distribution Discrepancy. Advances in Neural Information Processing Systems, pp. 1-19, 2023.
[AAAI] Zhilin Zhao, Longbing Cao, Yuanyu Wan. Mixture of Online and Offline Experts for Non-stationary Time Series. Association for the Advancement of Artificial Intelligence, pp. 1-8,2025.
[IJCAI] Zhilin Zhao, Longbing Cao, Philip S. Yu. Out-of-distribution Detection by Regaining Lost Clues. International Joint Conference on Artificial Intelligence,2025.